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ABSTRACT 

The lack of compatibility between degrees of freedom of various elements is a problem frequently encountered in practice 
during modeling complex structures. Coupling of membrane and beam elements is an illustrating classical example. The 
problem is generally treated through an additional rotational degree of freedom [1]. In this respect a new element based on the 
strain field has been developed with a drilling rotation in the Bergan sense [2]. The triangular element, with three nodes and 
three degrees of freedom constructed in this way, presents very good performance and may be used in various practical 
problems. 
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1 INTRODUCTION 
The strain based approach was applied by Sabir and 
Ashwell [3] to develop, a new class of elements for general 
plane elasticity problems in Cartesian coordinates. 

A basic rectangular element having the only essential nodal 
degrees of freedom and satisfying the requirements of 
strain free rigid body modes and compatibility within 
element is first developed by [4], this eight degrees of 
freedom element is based on linear direct strains and 
constant shear strain is named SBRIE (Strain Based 
Rectangular Inplane Elasticity). Other element meeting the 
above basic consideration together with equilibrium within 
the element is also developed (SBRIEE). Several 
variations of the (SBRIE) are also suggested by [5] and 
used under names (SBRIE1), and (SBRIE2) to produce 
solutions to general plane elasticity problems, these 
variations are based on satisfying equilibrium at the 
element level and the use of statical condensation. With the 
continuation of the development of the strain based 
approach many elements for general plane elasticity as well 
as shells have been devised by Sabir et al. 

Membrane elements -usually require only two degrees of 
freedom at each node, this type of elements is simple to 
derive and has been widely used. However some membrane 
structures such as shear walls and plates with holes are 
usually combined with beams having three essential 
degrees of freedom, if in the combined structures these 
three degrees of freedom are used they would adequately 
represent the beam element and they will necessitate the 

introduction of an additional degree of freedom in the two 
dimensional plane elements. This additional degree of 
freedom can be presented by the inplane rotation or drilling 
rotation of the plane element. 

The problem of the inclusion of the inplane rotation as an 
additional degree of freedom has also been treated by [6] 
using strain approach, and a simple and efficient 
rectangular element including the inplane rotation is 
derived SBRIEIR (Strain Based Rectangular Inplane 
Elasticity Inplane Rotation), and a triangular element 
incorporating the inplane rotation SBTIEIR (Strain Based 
Triangular Inplane Elasticity Inplane Rotation), is also 
developed, these elements are non conforming. 
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Figure 1: Structure (shear wall) and its discretization   
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The success of the application of the strain approach to two 
dimensions plane elasticity problems in Cartesian 
coordinates prompted the extension of the work to the 
development of strain based sector elements, Belarbi has 
developed a sector element with inplane rotation [7]. 
The object of this article is to improve the element of Sabir 
by proposing a new triangular element baptized SBT3 
(Strain Based Triangular 3-node) based on the strain model 
with three degrees of freedom (dof) per node, including 
plane rotation as an additional (dof) (Drilling rotation). 

 

2 DESCRIPTION OF ELEMENT ' SBTIEIR'  
The strain displacement relationship inplane elasticity is 
given by: 

εX =U,x = (∂U/∂x) ; εy= V,y ; γxy=U,y+ V,x (1) 

We first integrate equation (1) with all the strains equal to 
zero, thus obtaining  

UR = a1 - a3 y  

VR = a2 + a3 x  (2) 

¢z = a3 

The assumed strains are [6]: 
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After integrations of equations (3) we obtain; 
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The final displacement field will be obtained by 
combination of (4) and (2): 

)(

( )

( )
2

yxayaxaaθ

2
xa

2
xaxyaya

2
x-yaxaaV

2
ya

2
ya

2
axyaxayaaU

9753z

2

9876

22

532

2

98

22

75431

−
++−=

++++++=

++
−

+++−=
yx

(5) 

It was revealed that the unsatisfactory results obtained by 
using these elements could be due to the unnecessary 
coupling between the direct strains. 

In this work, a modified form of triangular element 
incorporating the inplane rotation, by avoiding such linking 
between the strains is developed  

3 VARIATIONAL FORMULATION OF 
ELEMENT 'SBT3' 

Figure 2 shows the geometry of element SBT3 and the 
corresponding nodal displacements. Each node (i) with Ui, 
VI, and inplane rotation ¢zi 
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Figure 2 : SBT3 element with drilling rotation 

 

Consider the triangular element shown in figure 2. The 
three Cartesian components of the field of strain in the plan 
of a point P of the element are given in equation (1). 

U, V: components of displacement respectively in the 
directions x and y. 

The components of the strain given in equations (1) can not 
be considered independent, for they are in terms of two 
displacements U, V and hence the strains must satisfy an 
additional equation called the compatibility equations. This 
equation can be formed by eliminating U, V from equation 
(1), hence:  
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By equating the strains, in equations (1) to zero and 
integrating the resulting partial differential equation, they 
obtained:   

U = a1 - a3 y  

V = a2 + a3 x      (7) 

The inplane rotation θz is obtained by: 

( ) 3,,
2
1 aUV yxz =−=θ   

This equation (7) gives the three components of rigid body 
displacements and requires three independent constants (a1, 
a2, and a3).   
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The present element has three nodes and three dof by node 
(U, V, and ¢z). The field of displacement must contain nine 
independent constants. Three of them (a1, a2, and a3) are 
already used to represent the MRB. The remaining six 
constants are available for expressing the deformation of 
the element. These are apportioned among the strains as 
below (8) so that the compatibility equation (6) is satisfied: 
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Expressions (8) are equated to the corresponding 
expressions in terms of U, V from equations (1) and the 
resulting equations integrated, to give 

( )
2

xyayaxaθ

3
xa

2
xaxyaya

2
xaV

3
ya

2
ya

2
yaxyaxaU

22

975z

3

9876

2

5S

3

98

2

754S

−
+−=

++++−=

++−+=

  (9) 

The complete shape function is the sum of the 
corresponding expressions from equations (7), and (9). 
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We notice that, the final functions of displacement contain 
quadratic and cubic terms thus allowing the change of 
curvature. 

If the classic formulation is adopted, two problems can 
arise: geometrical problem of distortion for certain finite 
elements of higher degree (loss of precision) and problem 
of blocking or locking of membrane and shearing for the 
case of the finite elements of degree relatively low. The 
adoption of a model of strain [8] followed by a method of 
integration purely analytical would make it possible to 
avoid these two problems. 

 

4 AUTOMATIC EVALUATION OF THE 
MATRIX [K0] 
The evaluation of the elementary matrix of rigidity is 
summarized with the evaluation of the following 
expression: 
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[Ke] = [A-1]T[K0] [A-1]  (11b) 

With:   

[K0] = [ ] [ ][ ] yxQQ d.d...D
s

T∫∫    (11c) 

Being given that [A] and its reverse can be evaluated 
numerically, it is carried out here as the evaluation of the 
integral (11c) becomes the key of the problem. Giving that, 
for certain elements, a too great distortion can lead to 
erroneous numerical results in particular in the calculation 
of Jacobien. We formulated for that an expression general, 
easy to implement on computer, allowing the evaluation in 
an automatic way the matrix [K0] whatever the degree of 
the polynomial (10) and the distortion of the element 
(Figure 3). 

In general, it is required to calculate double integrals of the 
form: 

I= [K0] = yxyxC d.d.
s

βα∫∫                        (12) 

The general form of the expression (12) is: 
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Figure 3: Distorted element (SBT3) 
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5 NUMERICAL RESULTS 
Numerical results for a variety of problems of plane 
elasticity are presented to demonstrate the level of accuracy 
attainable with the present element (SBT3). 

 

5.1 Higher order Patch test: Pure bending of a 
cantilever beam 

It is useful to know how behaves a finite element 
displaying an Important geometrical distortion. Sze, Chen 
and Cheung studied this Problem [9] in order to test the 
performance and the robustness of elements 07β and 07β*. 

Three examples are presented in this section in order to 
illustrate the interest of the model of strain. The element 
thus developed (SBT3), provided with degrees of freedom 
of rotation, and is particularly robust and more powerful 
than the SBTIEIR and classical elements. 

Consider a cantilever beam with rectangular section (L x t x 
h = 10 x 1 x 2) deformed in pure bending by two nodal 
forces (P=1000) forming a couple (consisting loading 
case). 

The loading case (figures 4) represents the higher patch-test 
[10]. 

The cantilever beam is discretized by two rectangular 
elements of membrane (regular grid) or trapezoidal 
(distorted grid); various cases of boundary conditions [9] 
are shown in the figures 4a, 4b and 4c.  The results 
obtained with elements SBTIEIR and SBT3 are compared 
with the analytical solution given by [12]. 

Note: 
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Figure 4a of a cantilever beam; Data and grids. Rotation θZ is free 

into 2. 
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Figure 4b of a cantilever beam; Data and grids. Rotation θZ is fixed 

into 1 and 2. 
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Figure 4c of a cantilever beam; Data and grids. Rotation θZ is free 

into 1, and 2. 

 

Table 1a: Pure bending of a cantilever beam; regular and distorted 
grid: case of the figure 4a 

Present element SBT3 SBTIEIR [6] 
σxB WA σxB WA 

e 

3016 95.82 335 44.77 0 
3000 96.37 230 44.51 0.5 
3000 96.78 430 45.99 1 
3058 97.04 479 46.60 1.5 
3058 97.15 464 48.83 2 
3048 97.13 419 48.39 2.5 
3035 97.02 377 48.84 3 
3024 96.87 340 49.01 3.5 
3014 96.70 313 49.14 4 
3007 96.51 293 49.04 4.5 
3000 100 3000 100 Ref. [12] 

 
Table 1b: Pure bending of a cantilever beam; Regular and 

distorted grid: case of the figure 4b 

Present element SBT3 SBTIEIR [6] 
σxB WA σxB WA 

E 

2976 95.86 326 44.74 0 
2990 96.45 215 44.98 0.5 
3015 96.91 350 40.50 1 
3031 97.14 454 46.51 1.5 
3058 97.15 431 47.51 2 
3022 97.12 380 48.15 2.5 
3010 96.96 332 48.53 3 
2999 96.76 292 48.68 3.5 
2990 96.52 262 48.65 4 
2983 96.29 240 48.48 4.5 
3000 100 3000 100 Ref. [12] 

 
Table 1c: Pure bending of a cantilever beam; Regular and 

distorted grid: case of the figure 4c 

Present element SBT3 SBTIEIR [6] 
σxB WA σxB WA 

E 

3018 96.02 241 45.08 0 
3030 96.60 230 45.33 0.5 
3051 97.04 355 45.84 1 
3066 97.30 479 46.88 1.5 
3066 97.40 464 47.96 2 
3056 97.38 419 48.68 2.5 
3044 97.26 377 49.15 3 
3032 97.10 340 49.40 3.5 
3023 96.90 313 49.47 4 
3016 96.70 293 49.40 4.5 
3000 100 3000 100 Ref. [12] 

 

For the case of the regular grid (Table 1a; e=0), good 
results are obtained for element SBT3 contrary to the 
element SBTIEIR which gives unacceptable results. On 
the other hand for the case of the distorted grid 
characterized by the distance "e" (e>0), the results of SBT3 
are powerful and comparable to the analytical solution. 
Element SBTIEIR remains sensitive to the distortions of 
the grid. The precision is always largely insufficient (Table 
1a and 1b). 

In the case of the figure 4b, the robustness of this element 
via the regular and distorted grid is confirmed. The Tables 
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1a and 1b show stability, the reliability and the good 
performance of this element SBT3, and whatever the 
geometrical distortion (only one element on h!). That is 
explained probably partly by the nature of analytical 
integration carried out. The distortion has a considerable 
influence on elements SBTIEIR. (Table1). These results 
confirm that the element thus developed satisfied good the 
higher patch ([10] and [11]).  

Table 1c confirms the good performance and the stability of 
this element SBT3 contrary at element SBTIEIR. 

 

5.2 Slender cantilever beam of MacNeal  

Consider the slender cantilever beam of MacNeal and 
Harder [15] with rectangular section (6 x 2 x 1) deformed 
in pure bending by end moment (M=10) and by a load 
applied at the free edge (P=1).  

The cantilever beam is modeled by six elements of 
membrane rectangular (figure 5a), trapezoidal (figure 5b) 
and parallelograms (figure 5c). 

MacNeal [16] affirms that the trapezoidal shape of the 
membrane finite elements has four nodes without degrees 
of freedom of rotation (with linear fields) generate a 
locking even if these elements pass the patch test. It 
qualified this problem of "trapezoidal locking ". 

NOTE: This rule does not apply for the strain based 
element. The results obtained for SBT3 are compared with 
those obtained with other known quadrilateral elements 
(table2). 

Through these three cases of grids (figures 5a, 5b, 5c), we 
underlined the effectiveness of this element SBT3. The 
results obtained for elements Q4 and PS5β (table 2) show 
well the problem of trapezoidal locking announced by 
MacNeal et al. [16]. 

In conclusion, we can say that element SBT3 is very 
powerful for this type of problem dominated by bending. It 
remains stable with the geometrical distortions. 

 
Table 2: Slender cantilever beam of MacNeal; Displacement 

standardized at the free end: case of figure 6 

Pure Flexure  Force shearing at the free end 
Element 

Regular Trapezoidal Parallel Regular Trapezoidal Parallel 
Q4 0,093 0,022 0,031 0,093 0,027 0,034 

PS5β 1,000 0,046 0,726 0,993 0,052 0,632 

AQ 0,910 0,817 0,881 0,904 0,806 0,873 
MAQ 0,910 0,886 0,890 0,904 0,872 0,884 
Q4S  

[MAC 89] 
- - - 0,993 0,986 0,988 

07β 1,000 0,998 0,992 0,993 0,988 0,985 

SBT3 0,989 0,988 0,988 0,964 0,950 0,950 

SBTIEIR [6] 0.118 0.004 0.101 0.047 0.0005 0.036 
Theory of 
the beams 

1,000 
(0,270) 

1,000 
(0,1081) 
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a) Rectangular Shape Elements 

45° 45°
10

1

b) Trapezoidal Shape Elements 

Data  : E=107  ,    ν=0,3   ,   L=6    ,   t=0,1

45°
10

1

c) Parallelogram Shape Elements  
Figure 5: Slender cantilever beam of MacNeal. Data and grids. 

 

5.3 Plane flexure of beam cantilever. 

A beam cantilever, with uniform cross-section, carries a 
uniform vertical load (figure.6), calculate the deflection VA 
at the free end. 

This problem was dealt with by Batoz and Dhatt in their 
work [11] in order to test the performances of elements 
CST, LST, Q4, Q4WT 17, 18, Q4PS 19 and Q8. 
Récemment Ayad [20] made a similar study to test the 
reliability of these new elements FRQ and FRT based on 
the concept" Fibre Planes in Rotation". The results obtained 
for different grids are presented on table 3. 
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Figure 6: Grids regular and distorted 

 

5.3.1 Comments: grids without distortions (Figures 6a, 6b and 
6c)  

The results obtained for SBT3 are powerful and 
comparable with the robust element Q8.  

Element SBT3 converges better than CST, it is comparable 
with element LST in term of a total number of DOF 
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5.3.2 Comments: grids with distortions (Figures 6d and 6e)  

Very good performance of element SBT3 is confirmed. The 
corresponding results are more precise than elements FRT, 
CST, Q8 and are also comparable with element LST in 
term of the total number of DOF. 

 
Table 3: Beam in plane flexure, Displacement VA. Comparison with 

various elements 

FRT Q8 LST CST SBT3 
SBTIEI
R [SAB 

85] Figure 

IR: 1PH IE :3x3 IE :3PH IE :1PH IA IA 

2.16a 
2,32* 

(12)** 

3,03 

(16) 

3,00 

(18). 

0,05 

(8) 

2,8846 

(12) 
1.42 

2.16b 
2,92 

(18) 

3,70 

(26) 

3,70 

(30) 

0,13 

(12) 

2,8993 

(18) 
1.68 

2.16c 
3,07 

(24) 

3,84 

(36) 

3,84 

(42) 

0,25 

(16) 

2,9289 

(24) 
1.69 

2.16d 
1,99 

(18) 

0,64 

(26) 

3,02 

(30) 

0,06 

(12) 

2,9155 

(18) 
1.42 

2.16e 
2,02 

(24) 

1,76 

(36) 

3,09 

(42) 

0,10 

(16) 

2,9660 

(24) 
1.40 

*VA: Vertical displacement in A; IE:  Exact integration; **NDLT:  
Number total dof;  
IR:  Reduced integration; IA: Integration analytical 
 

The corresponding results are very close to those obtained 
with the regular grids. In conclusion, we can say that 
element SBT3 is very powerful for this type of problem 
dominated by the flexure. The precision of element 
SBTIEIR is always largely insufficient.  

 

6 CONCLUSION 
While making it possible to combine various finite 
elements the ones with the others in the complex structures, 
the addition of degree of freedom of rotation Z also makes 
it possible to improve the precision without increasing the 
number of nodes and to remove the difficulties related to 
famous the sixth degree of freedom of the hulls. 

Very good results are obtained. SBT3 particularly robust 
(rich in membrane), is simplified much more and more 
powerful than element SBTIEIR. Currently the strain 
based element gain ground, would be this only because 
they make it possible to enrich the field by displacements 
by intermediate terms of a nature raised without 
introduction of nodes. 

It interesting to explore the combination of SBT3 with 
elements rich in flexure such as DKT, etc. 
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